C0-semigroup - définition. Qu'est-ce que C0-semigroup
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est C0-semigroup - définition


C0-semigroup         
GENERALIZATION OF THE EXPONENTIAL FUNCTION
C0 semigroup; Strongly continuous semigroup; One-parameter semigroup; Diffusion semigroup; Mild solution
In mathematics, a C0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces.
Monogenic semigroup         
  • Monogenic semigroup of order 9 and period 6. Numbers are exponents of the generator ''a''; arrows indicate multiplication by ''a''.
SEMIGROUP GENERATED BY A SINGLE ELEMENT
Cyclic semigroup; Periodic semigroup
In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups.
Null semigroup         
SEMIGROUP WITH AN ABSORBING ELEMENT, CALLED ZERO, IN WHICH THE PRODUCT OF ANY TWO ELEMENTS IS ZERO
Zero semigroup; Left zero semigroup; Right zero semigroup
In mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously.